CORRIGÉ

Abdellatif EL HOUTA

Inspecteur Coordonnateur de Mathématiques Région de Marrakech-Safi

EXERCICE I

1) **a-** On a : $u_0 = 1$ donc $u_0 > 2$. Supposons $u_n > 1$.

Soit
$$n \in \mathbb{N}$$
. On a: $u_{n+1} = \frac{\sqrt{2}}{2}u_n + \frac{2-\sqrt{2}}{2} = \frac{\sqrt{2}}{2}u_n + 1 - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(u_n - 1) + 1$

Donc
$$u_{n+1} - 1 = \frac{\sqrt{2}}{2}(u_n - 1)$$
 et par suite, si $u_n > 1$ alors $u_{n+1} > 1$

D'où : $(\forall n \in \mathbb{N})$; $u_n > 1$

b- Soit
$$n \in \mathbb{N}$$
. On a: $u_{n+1} - u_n = (u_{n+1} - 1) - (u_n - 1) = \frac{\sqrt{2}}{2}(u_n - 1) - (u_n - 1)$

Donc:
$$u_{n+1} - u_n = \frac{\sqrt{2}-2}{2}(u_n - 1).$$

Comme $u_n > 1$ et $\sqrt{2} - 2 < 0$, on a $u_{n+1} - u_n < 0$ et par suite (u_n) est décroissante. (u_n) est décroissante minorée (par 1) donc convergente.

2) **a-** Soit
$$n \in \mathbb{N}$$
. On a: $v_{n+1} = u_{n+1} - 1$
= $\frac{\sqrt{2}}{2}(u_n - 1)$ (voir 1) **a-**)
= $\frac{\sqrt{2}}{2}v_n$

 (v_n) est donc géométrique de raison $q = \frac{\sqrt{2}}{2}$. Son premier terme est $v_0 = u_0 - 1 = 1$.

b- Soit
$$n \in \mathbb{N}$$
. On a : $v_n = v_0 q^n = \left(\frac{\sqrt{2}}{2}\right)^n$ donc $u_n = 1 + v_n = 1 + \left(\frac{\sqrt{2}}{2}\right)^n$

On a:
$$-1 < \frac{\sqrt{2}}{2} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2}\right)^n = 0$ et donc $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 1 + \left(\frac{\sqrt{2}}{2}\right)^n = 1$

$$\mathbf{c-} S = \sum_{k=0}^{2021} u_k = \sum_{k=0}^{2021} \left(1 + \left(\frac{\sqrt{2}}{2} \right)^k \right) = \sum_{k=0}^{2021} 1 + \sum_{k=0}^{2021} \left(\frac{\sqrt{2}}{2} \right)^k = 2022 + \frac{1 - \left(\frac{\sqrt{2}}{2} \right)^{2022}}{1 - \left(\frac{\sqrt{2}}{2} \right)}$$

Donc (détails non demandés) :
$$S = 2022 + \frac{2(1 - \frac{1}{2^{1011}})}{2 - \sqrt{2}}$$
 et ainsi : $S = 2022 + \frac{2^{1011} - 1}{2^{1010}(2 - \sqrt{2})}$

EXERGIGE 2

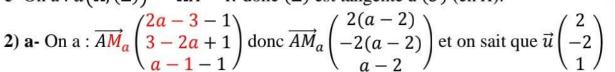
A(1,-1,1), B(5,1,-3) et $\vec{u} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$. (S) la sphère de centre $\Omega(3,0,-1)$ de rayon R=3 et

(Δ) la droite passant par A et dirigée par \vec{u} .

1) a- On a:
$$\overrightarrow{\Omega A} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$$
 donc $\Omega A = \sqrt{(-2)^2 + (-1)^2 + 2^2} = \sqrt{9} = 3$

b- On a :
$$\vec{u}$$
. $\Omega \vec{A} = 2 \times (-2) + (-2) \times (-1) + 1 \times 2 = 0$ donc (Δ) \perp (ΩA)

c- On a : $d(\Omega, (\Delta)) = \Omega A = R$ donc (Δ) est tangente à (S) (en A).



Donc: $\overrightarrow{AM}_a = (a-2)\overrightarrow{u}$

b- (Δ) est définie par A et \vec{u} , donc $M \in (\Delta) \Leftrightarrow \overrightarrow{AM}$ et \vec{u} sont colinéaires.

Pour tout réel a on a: $\overrightarrow{AM}_a = (a-2)\overrightarrow{u}$ donc \overrightarrow{AM}_a et \overrightarrow{u} sont colinéaires donc $M_a \in (\Delta)$

3) **a-** On a :
$$\overrightarrow{M_aM}$$
 $\begin{pmatrix} x - 2a + 3 \\ y + 2a - 3 \\ z - a + 1 \end{pmatrix}$ et \overrightarrow{u} $\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$

 $(\Delta) \perp (\mathcal{P}_a)$ donc \vec{u} est normal (\mathcal{P}_a) , ainsi :

$$\begin{aligned} M(x,y,z) &\in (\mathcal{P}_a) \Leftrightarrow \overrightarrow{u}. \, \overline{M_a M} = 0 \\ &\Leftrightarrow 2(x-2a+3)-2 \end{aligned}$$

$$\Leftrightarrow 2(x - 2a + 3) - 2(y + 2a - 3) + 1(z - a + 1) = 0$$

$$\Leftrightarrow 2x - 2y + z - 9a + 13 = 0$$

 \vec{u}

b- Posons
$$d_a = d(\Omega_1)$$
. On $a: d_a = \frac{|6-1-9a+13|}{\sqrt{2^2+(-2)^2+1^2}} = \frac{|18-9a|}{\sqrt{9}} = |6-3a| = |3a-6|$

c-
$$(\mathcal{P}_a)$$
 est tangent à $(\mathcal{S}) \Leftrightarrow d_a = R$ où $R = 3$ $\Leftrightarrow |3a - 6| = 3$

$$\Leftrightarrow |a-2|=1$$

$$\Leftrightarrow a-2=1 \text{ ou } a-2=-1$$

$$\Leftrightarrow a = 3 \text{ ou } a = 1$$

EXERGIGE 3

$$Z_A = 1 + 5i$$
, $Z_B = 1 - 5i$, $Z_C = 5 - 3i$

t la translation de vecteur \overrightarrow{OA} et \mathcal{R} la rotation de centre D et d'angle $\frac{2\pi}{3}$

1) On a:
$$Z_D = \frac{Z_A + Z_C}{2} = \frac{6 + 2i}{2} = 3 + i$$

2) h l'homothétie de centre A et de rapport $k = \frac{1}{2}$

On a:
$$h(B) = E \Leftrightarrow \overrightarrow{AE} = k \overrightarrow{AB}$$

 $\Leftrightarrow Z_E - Z_A = \frac{1}{2}(Z_B - Z_A)$
 $\Leftrightarrow Z_E = 1 + 5i + \frac{1}{2}(1 - 5i - 1 - 5i)$
 $\Leftrightarrow Z_E = 1$

3) \mathcal{R} la rotation de centre C et d'angle $\left(-\frac{\pi}{2}\right)$. Posons $\mathcal{R}(B) = G$

On a:
$$\mathcal{R}(B) = G \Leftrightarrow Z_G - Z_C = e^{-i\frac{\pi}{2}}(Z_B - Z_C)$$

 $\Leftrightarrow Z_G = 5 - 3i - i(1 - 5i - 5 + 3i)$
 $\Leftrightarrow Z_G = 3 + i$

On remarque que $Z_G = Z_D$ donc $\mathcal{R}(B) = D$

4)
$$Z_F = -1 + i$$
.

a- On a:
$$\frac{Z_D - Z_A}{Z_F - Z_A} \times \frac{Z_F - Z_E}{Z_D - Z_E} = \frac{2 - 4i}{-2 - 4i} \times \frac{-2 + i}{2 + i} = \frac{1 - 2i}{-1 - 2i} \times \frac{2i^2 + i}{-2i^2 + i} = \frac{1 - 2i}{-1 - 2i} \times \frac{i(2i + 1)}{i(-2i + 1)} = -1$$

b- On a:
$$(\overline{AF}, \overline{AD}) + (\overline{ED}, \overline{EF}) \equiv \arg \frac{Z_D - Z_A}{Z_F - Z_A} + \arg \frac{Z_F - Z_E}{Z_D - Z_E}$$
 [2 π]
$$\equiv \arg \left(\frac{Z_D - Z_A}{Z_F - Z_A} \times \frac{Z_F - Z_E}{Z_D - Z_E}\right)$$
 [2 π]
$$\equiv \arg(-1)$$
 [2 π]

c- On a:
$$\frac{Z_E - Z_F}{Z_A - Z_F} = \frac{2 - i}{2 + 4i} = -\frac{i + 2i^2}{2(1 + 2i)} = -\frac{i(1 + 2i)}{2(1 + 2i)} = -\frac{1}{2}i$$

Donc:
$$\frac{Z_E - Z_F}{Z_A - Z_F} = \frac{1}{2} \left(\cos \left(-\frac{\pi}{2} \right) + \sin \left(-\frac{\pi}{2} \right) \right)$$

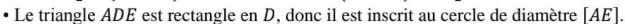
On a :
$$(\overrightarrow{FA}, \overrightarrow{FE}) \equiv \arg \frac{Z_E - Z_F}{Z_A - Z_F}$$
 [2 π] donc $(\overrightarrow{FA}, \overrightarrow{FE}) \equiv -\frac{\pi}{2}$ [2 π]

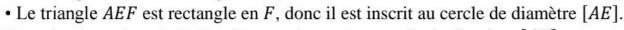
Ainsi, le triangle AEF est rectangle en F.

d- On a :
$$\frac{Z_D - Z_A}{Z_F - Z_A} \times \frac{Z_F - Z_E}{Z_D - Z_E} = \frac{Z_E - Z_F}{Z_A - Z_F} \times \frac{Z_D - Z_A}{Z_D - Z_E} = -1$$

Donc
$$(\overrightarrow{FA}, \overrightarrow{FE}) + (\overrightarrow{ED}, \overrightarrow{AD}) \equiv \pi$$
 [2 π]

Donc:
$$-\frac{\pi}{2} + \left(\overrightarrow{ED}, \overrightarrow{AD}\right) \equiv -\pi \ [2\pi] \text{ et ainsi } \left(\overrightarrow{ED}, \overrightarrow{AD}\right) \equiv -\frac{\pi}{2} \ [2\pi]$$





Par suite, les points A, D, E et F appartiennent au cercle de diamètre [AE].

EXERGIGE 4

On tire 3 boules simultanément. 3B 4R 5V

L'univers Ω est l'ensemble des combinaisons de 3 éléments parmi 12 éléments.

Ainsi : card
$$\Omega = C_{12}^3 = \frac{12 \times 10 \times 11}{3 \times 2} = 2 \times 10 \times 11 = 220$$

1) a- A: "Obtenir exactement 2 boules rouges". On a: card
$$A = C_4^2 \times C_8^1 = 6 \times 8 = 48$$

Donc:
$$p(A) = \frac{\text{card } A}{\text{card } \Omega} = \frac{48}{220} = \frac{12}{55}$$

B: "Obtenir exactement 1 boule verte". On a: card B =
$$C_5^1 \times C_7^2 = 5 \times 21 = 105$$

Donc:
$$p(B) = \frac{\text{card B}}{\text{card }\Omega} = \frac{5 \times 21}{2 \times 10 \times 11} = \frac{21}{44}$$

b-
$$A \cap B$$
: "Obtenir 2 boules rouges et 1 boule verte". card $A \cap B = C_4^2 \times C_5^1 = 6 \times 5 = 30$

Donc:
$$p(A \cap B) = \frac{\operatorname{card} A \cap B}{\operatorname{card} \Omega} = \frac{30}{220} = \frac{3}{22}$$
 et ainsi: $p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{3/22}{21/44} = \frac{6}{21} = \frac{2}{7}$

On a : $p(A) \neq p(A|B)$ donc les événements A et B sont dépendants.

4) a- X la variable aléatoire égales au nombre de boules vertes tirées.

• Les valeurs prises par X sont : 0, 1, 2 et 3. On a :
$$p(X = 1) = p(B) = \frac{21}{44}$$

•
$$p(X = 0) = \frac{C_7^3}{220} = \frac{35}{220} = \frac{7}{44}$$

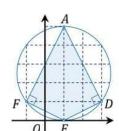
•
$$p(X = 2) = \frac{C_5^2 \times C_7^1}{220} = \frac{10 \times 7}{220} = \frac{14}{44}$$

•
$$p(X = 3) = \frac{C_5^3}{220} = \frac{10}{220} = \frac{2}{44}$$

x_i	0	1	2	3
$n(Y-x_1)$	7	21	14	2
$p(x-x_i)$	44	44	44	44

La loi de probabilité est donnée par le tableau ci-dessus.

b- La probabilité d'obtenir au moins 2 boules vertes est
$$p(X=2) + p(X=3) = \frac{16}{44} = \frac{4}{11}$$



 $[2\pi]$

PPOBLAME

 $f(x) = x^4(\ln x - 1)^2$ si x > 0 et f(0) = 0. (C) la courbe de f dans un repère orthonormé.

1) On a :
$$\lim_{x \to +\infty} f(x) = +\infty$$
 car $\lim_{x \to +\infty} x^4 = +\infty$ et $\lim_{x \to +\infty} \ln x = +\infty$

On a:
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x^3 (\ln x - 1)^2 = +\infty$$
. Donc:

(C) admet au voisinage de +∞ une branche parabolique de direction l'axe des ordonnées.

2) a- On a:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 (x \ln x - x)^2 = 0 = f(0)$$
.

Donc f est continue à droite en 0.

b-
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} x (x \ln x - x)^2 = 0$$

f est donc dérivables à droite en 0 et $f'_d(0) = 0$.

(C) admet une demi-tangente à droite en O(0,0)

3) **a-** Soit $x \in]0, +\infty[$. On a :

•
$$f'(x) = 4x^3(\ln x - 1)^2 + x^4 \times 2(\ln x - 1)\frac{1}{x}$$

= $2x^3(\ln x - 1)(2\ln x - 2 + 1)$
= $2x^3(\ln x - 1)(2\ln x - 1)$

•
$$f'(x) = 0 \Leftrightarrow \ln x - 1 = 0$$
 ou $2 \ln x - 1 = 0 \Leftrightarrow x = e$ ou $x = \sqrt{e}$ (car $x > 0$)

'(x)|0

•
$$f'(x) \le 0 \Leftrightarrow \frac{1}{2} \le \ln x \le 1 \Leftrightarrow \sqrt{e} \le x \le e$$

Tableau de variation de la fonction f

4) a- pour
$$x > 0$$
, $f''(x) = 2x^2(6 \ln x - 5) \ln x$

Remarque	
Kemarque	

On montre que f' est dérivable à droite en 0 et f''(0) = 0.

On dresse le tableau de signe de la fonction f'':

b- On voit que la dérivée s'annule en changeant de signe aux points 1 et $e^{5/6}$.

		0						
0)	= ().						
	х	0		1		$e^{5/6}$		+∞
f'	'(x)	0	+	0	_	0	+	

 $+\infty$

 $+\infty$

+

Les points d'abscisses 1 et $e^{5/6}$ sont donc des points d'inflexion de (C).

On a:
$$f(1) = 1$$
 et $f(e^{5/6}) = \frac{\sqrt[3]{e} e^3}{\sqrt[3]{6}} \approx 0.8$.

5) a- Tracé de la courbe (C).

b- Pour x > 0, on a :

$$f(x) = 1 \Leftrightarrow x^2(\ln x - 1) = -1 \text{ ou } x^2(\ln x - 1) = 1$$

La droite (\mathcal{D}) d'équation y = 1 coupe la courbe (\mathcal{C}) en 3 points dont les abscisses sont :

1, α avec $\sqrt{e} < \alpha < e$ et β avec $\beta > e$. On a :

•
$$x^2(\ln x - 1) = -1 \text{ pour } x \in \{1, \alpha\}$$

•
$$x^2(\ln x - 1) = 1$$
 pour $x = \beta$.

L'équation $x^2(\ln x - 1) = -1$ admet donc deux solutions : 1 et α .



6) **a-** Pour
$$x = 0$$
, on a $g(-x) = g(x) = 0$. Soit $x \in \mathbb{R}^*$. On a $(-x) \in \mathbb{R}^*$ et: $g(-x) = f(|-x|) = f(|x|) = h(x)$.

Ainsi, g est une fonction paire.

b- Tracé de la courbe (C):

Soit (C') l'image de (C) par la symétrie dont l'axe est celui des ordonnées.

On a : $(\mathcal{C}_q) = (\mathcal{C}) \cup (\mathcal{C}')$ (voir figure ci-dessus).

7) **a-** On a:
$$I = \int_{1}^{e} \left(\frac{x^{5}}{5}\right)' (\ln x - 1) dx$$
$$= \left[\frac{x^{5}}{5} (\ln x - 1)\right]_{1}^{e} - \int_{1}^{e} \frac{x^{4}}{5} dx$$
$$= \left[\frac{x^{5}}{5} (\ln x - 1) - \frac{x^{5}}{25}\right]_{1}^{e}$$
$$= \left[\frac{x^{5}}{25} (5 \ln x - 6)\right]_{1}^{e}$$
$$= \frac{6 - e^{5}}{25}$$

b- Soit x > 0. On a : $h(x) = x^5 (\ln x - 1)^2$ donc :

$$h'(x) = 5x^4(\ln x - 1)^2 + x^5 \times 2(\ln x - 1)^{\frac{1}{x}} = 5f(x) + 2x^4(\ln x - 1)$$

c- Pour
$$x > 0$$
, on a : $f(x) = \frac{1}{5}h'(x) - \frac{2}{5}x^4(\ln x - 1)$.

Donc:
$$\int_{1}^{e} f(x) dx = \frac{1}{5} \int_{1}^{e} h'(x) dx - \frac{2}{5} \int_{1}^{e} x^{4} (\ln x - 1) dx$$

$$= \frac{1}{5} [h(x)]_{1}^{e} - \frac{2}{5} I$$

$$= \frac{1}{5} (h(e) - h(1)) - \frac{2}{5} I$$

$$= -\frac{1}{5} - \frac{2}{5} I$$

d- Pour $x \in [1, e]$ on a $f(x) \ge 0$, donc l'aire demandée est :

$$\mathcal{A} = \int_1^e f(x) dx = -\frac{1}{5} - \frac{2}{5}I = -\frac{1}{5} - \frac{2}{5} \times \frac{6 - e^5}{25} = \frac{2e^5 - 37}{125}$$
 unités d'aire.

